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Exact determinations of the shapes of the front parts of plane and axi- 
symmetric minimal drag bodies in supersonic aerodynamics have been 
carried out only for special cases [l-41. In this problem, the pressure 
on the surface of the body, which is determined by partial differential 
equations and boundary conditions which depend on the contour shape, is 
a functional of a form not known beforehand. The exact solutions 
mentioned were all successfully carried out using a transition, pro- 
posed by Nikol’skii Id, from the body contour to a characteristic con- 
tour which in many cases permits a reduction of the problem to a known 
problem in the calculus of variations. However, such a solution can be 
successfully constructed only under certain special relationships be- 
tween the body dimensions and the free-stream Mach number M. For 
example, in the two-dimensional case, for each M and a certain tbick- 
ness ratio which depends on M, the minimal drag body is a wedge. The 
body shapes for other thickness ratios are not determined. Exact solu- 
tions with restrictions on volume, surface area, etc. still are un- 
available. 

We note two approximate approaches. The first is related to linear- 

ization of the equations of motion, which then can be integrated and an 
expression obtained for the drag of the body as some functional of the 
body shape. In this case, the problem reduces to an ordinary problem in 
the calculus of variations. This procedure is applicable for determining 
optimal bodies for all supersonic speeds [S-91, provided the bodies so 
determined turn out to be thin and pointed. Tbe second approach is based 
on applying the approximate formulas for pressure on a surface, obtained 
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on the basis of elementary ideas from hypersonic flow theory (M >> 1). 

Usually, for these purposes, the drag laws of Newton and Busemann [lo, 

111 are used. For bodies of the most interesting shapes with arbitrary 

thickness, the equation of the contour is found in final form. Further 

simplification for thin bodies is unnecessary, and is sometimes intro- 

duced 1121 solely for the purpose of reducing the volume of computa- 

tions. There are significantly more papers directed toward the second 

approach than toward the first. In particular, the first problem of 

this type was already studied by Newton [131. However, in works along 

this direction, insufficient attention has been given to the fact that 

in the general case, the contour of the minimal drag body consists of 

extremal sections (two-sided ertrera) and of sections of boundary ex- 

trema. The last are the boundaries of the domains of admissible vari- 

ations of the parameters, and are determined both from the statement of 

the problem and from the regions of applicability of the approximate 

formulas. Ignoring this leads to certain difficulties, and to the use- 

lessness of some solutions. 

The present paper is entirely devoted to determining optimal bodies 

with arbitrary restrictions. We first obtain the solution using the 

Newtonian drag law. The necessary conditions for an extrenum are ob- 

tained, as well as necessary conditions for minimum drag (the latter are 

sufficient for strong inequalities). As an example, we gave the solution 

for the case of given dimensions of the body. Some new results are ob- 

tained for plane bodies and for ducted axisymmetric bodies. For example. 

it turns out that the wedge is not always an optical body. Similar in- 

vestigations are then carried out for the BusematUI drag law. In this 

case. unless the body is thin, the complete solution is known only for 

the case of body dimensions given. For thin bodies. the solution w8S 

recently obtained under some other restrictions [121. In the Present 

paper the solution is found for bodies under arbitrary restrictions. 

Similar investigations may be carried out for other drag laws (for 

example, diffuse or spectral reflection of particles in free-molecule 

flow). 

1. We first define some notations. l’he isoperimetric conditions will 

be written in the form 

Lj = s ‘fj(y, 2, d)dp (i=i,...,m) 

Here x and y are rectangular coordinates; the y-axis is perpendicular 

to the unperturbed velocity V; the x-axis, as well as V is directed 
from left to right and, in the axisynmetric ,case, coincides with the 
axis of symmetry; LJ are given constants; fJ are known functions; 5 is 
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the number of isoperimetric conditions; X’ = dx/dy; indices 0 and 1 de- 

note respectively quantities at the beginning and end points of the con- 

tour, always with y0 and x0 considered as fixed and x,, = 0. 

The direction from point 0 to point 1 along a circuit around the con- 

tour is always chosen to be the positive direction. Similarly, we de- 

fine the positive tangential direction. ‘Ihe inclination of the contour 

with respect to the x-axis, u = cot -1 xI , is measured counterclockwise. 

A corner angle on the contour is considered positive (or negative) if 

in passing through this corner the contour rotates counterclockwise (or 

clockwise). 

\Ye introduce the m-dimensional vectors I> = (L1, . . . , L”), f = (f’, 
. . . , f”), fy = t&l, . . . , fr) etc. Multiplication by scalars and scalar 

products are defined in the usual fashion. For example, if A = (h’, 

. . . , A”), then 

(A, f) = hlfl + . . . + ?Pf” 

Finally, let p denote the pressure on the body surface, and let v=O 

and 1 for plane flow and axisyametric flow, respectively. 

V/e formulate the variational problem. Among admissible functions 

5 = z (Y), 20 (Yo) = 0 

we seek that function which gives the minimum drag 

W) 

under the isoperimetric conditions 

ut 

L = 
s 

f (y, 2, 2’) dy (1.3) 
Ym 

Furthermore, we may give the body length x1 and the thickness yl, 

‘Ihe expression for p and the class of admissible functions are defined 

by the particular form of the drag law. From the physical meaning of 
the quantities x and y, it follows that the functions (1.1) must be 
piecewise smooth. 

2. Newton's drag law. According to Newtonian theory the pressure 

on the body surface is determined by the local inclination of the con- 

tour for O\<O~.~T: 

p = pV2 sin2 o = pV2 (1 + x12)-1 (2.1) 
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where p is the density of the undisturbed stream. Thus, within an un- 

important multiplicative positive constant 

X=1 &dY (2.2) 
ll* 

Determinations of optimal shapes using (2.1) are given in [13-241. 

For unducted arisymmetric bodies, the most complete investigation was 
given by Lavrent’ev and Liusternik [141 and by Eggers, Resnikoff, and 

Dennis 1151. 

The class of admissible functions is determined by the region of 

applicability of formula (2.1). Legendre 1161 already pointed out the 
absurdity that according to (2.1), the appearance of deep cavities or 
sharp edges on the body surface decreases the drag. This result can be 
explained by the fact that the flow pattern in those cases does not cor- 
respond to the ideas adopted in the derivation of (2.1). The latter fact 
is obvious if we remember that in the derivation, we have made the 
assumption that the gas particles offer no friction with the body sur- 
face and only lose their normal momentum there. 

To exclude such cavities and spikes from consideration, (their re- 

sulting decrease in drag is due to inconsistencies with (2.1)), we may 

limit the class of a&issible functions by the condition 

O<U<n/2 or O\<X'<~ (2.3) 

For the same reason, it is expedient to exclude from consideration 

curves with positive angles at corners. Thus, the class of acknissible 

functions consists of piecewise smooth curves, issuing from the point 

Y = Yl), x = 0, satisfying (2.3), and having no positive corner angles. 

‘The equations of the extremal segments and the matching conditions 

for the different segments are found from the necessary conditions for 

the extrema. Segments of the boundary extremal curves may be made up 

of pieces of the boundary of the region (2.3) 

5 = const., Y = const (2.4) 

and curves defined by the formulation of the problem. these can only be 

the straight lines 

5 = 0, z = 51, Y = YOl Y = Yl (2.5) 

which are obtained if, in addition to the isoperimetric conditions, the 

dimensions of the body are also given; and, as easily seen, they are 

included in (2.4). Naturally, optimal contours contain the straight 
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lines (2.4) only when acknissible variations of the latter lead to drag 

increases. 

To solve the problem, we set up the functional 

111 

I = S[ -L. + (1, 91 dY 1:z” 
l/D 

(2.6) 

where h', . . . . hm are Lagrange multipliers. Since, for the admissible 

variation, the variation of the right-hand side of (1.3) is zero, then 

all the variations of I and x coincide. The contour may possess corners; 

the interval of integration is subdivided into a finite number of inter- 

vals in each of which x' is continuous. The value of any quantity at 

the ith corner will be denoted by the subscript i (i = 2, 3, . ..). while 

subscripts - and + denote the values of the functions before and after 

the corner. Carrying out the variations and the integration by parts, we 

find 

6I= & [ + (L fl]l AYI - [ & - (1, fx,)]l 6x,+ 

1 
+ [YV (& - - 1 + x;= 1 + (?, f- - f+)J Ayi - [ & - (1, f,*)]i_bi_ + 

where Ayyl and Ayi are the variations in the ordinates at the end point 

and at the corners. We sum over the repeated indices at all the corners. 

'Ihk letter 6 denotes variation. We can show that at the points 1 and i 

8x = Ax - x'6y - 6x'Ay - x"(Ay)"/2 + .., (2.i) 

Here Ax is the displacement of the abscissa at the end or corner 

points, and the dots indicate terms of higher order. IJsing (2.7), we get 

*I = [ Y' 
1 + 32’2 
(1 +xt2)2 + (1, f - x'fx4]lA~, - [ fi2~;212-(L t+]l AxI + 

+ {Yf(:g;;;: - ,:,';;;j 1 + (A, f_ - x_‘f._ - f, + x+ffxn+)}i Ayi - 

- 2y' ’ 
-i r (1 +Yy - 

I 

(1+2+94 ] - (1, kc- - r,,)}i Axi + (2.8) 

+ y ((1, fx) + $ [ (17”z212 - (a, fxe) ]} 62 dy 
uo 

Utilizing this expression, we find, first of all, the equations of 
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the extremals and the matching conditions. If the extremal does not 

agree with (2.4), then 6x is arbitrary there. Consequently, on such 

segments, the necessary condition for an extremum (Euler equation) 
assumes the form 

(2.9) 

For many practically interesting isoperimetric conditions 

f = f (y, 5’) (2.lCfj 

i.e. f, E 0. In such a case, the equation of the extremal may be written 
in final form. To this end, let q = x’ and consider it as a parameter. 

In view of (2.10), we have, from (2.9) 

2Y”9 

(1 + 9T 
- (1, fy) = c (C = const) (2.11) 

Here fxt is a function of y and 7. From (2.11) we find the relation- 

ship y = y(q) or ‘7 = q(y), and then 

x = x (q) = \ q y dq + C, (2.12) 

or 

2 = 5 (Y) = 
s 

q (9) dy + C, (Cl = const) (2.13) 

Fqations (2.12) and (2.13) have been derived for some concrete cases 

in [lo, 14,15,231. 

We now find the matching conditions for the different sections. 

First of all, there arises the question whether the contour has any 

corners joining the extremal segments. If it has, then at these corners, 

in view of the arbitrariness of-Ayi and 

y’ [(i ; 2:): - -- ’ + 3=+‘* $ (1, f_ - 1 (1 + ~.+‘*)*. 

2Y’ [(, +yc3)2 - x+‘ _ 
(I + x+‘“)* I 

Axi, we have simultaneously 

X_‘fs’_ - f, -I- J+‘f./+) = 0 

(A, f./_ - fy,) = 0 

Let y, x, x’ be an arbitrary point on the extremal. Write x’ as x_‘. 

In the presence of a corner of the type in question, it is necessary 

for these equations to have a root x+’ > x_‘. The complete explanation 

of this can be given only for specific forms of the function f. I!owever, 

by virtue of the independence of the equations, the non-trivial roots, 
if any, can occur only in highly special instances. At those points 
where the extremals join the straight lines x = 0 and y = y1 (the other 

straight lines in (2.4) are excluded because of the positive angles at 
the corners) only one of the equations need be satisfied. At the point 

of joining with the straight line x = 0, when i = 2 the quantity Ayy, is 

arbitrary, and Ax, >O. Thus 
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Here the first equation (condition of iveierstrass and Erdman) is the 
necessary condition for an extremum, while the second is the necessary 
condition for a minimum. Ploreover, since on the segment x = 0 the quanti- 
ty 6x >O, then another necessary condition for a minimum is 

= 0 (2.14) 

(2.15) 

fYo\<Y av4 (2.16) 

Similar reasoning for the point i = 3, the point where the extremal 
joins the straight line y = y1 (where Ax3 is arbitrary, while Ayy3 and 
Ay < 0 for a variation of the segment y = y1 independent of the vari- 
able x) , leads to the necessary condition for the extremum (x+ ’ = m) 

(2.17) 

and to the necessary condition for the minimum 

(2.19) 

Expression (2.18) also gives the end conditions. For a free length, 

2Y~v& 
fl -I- Q'T 

- (a, f&)1 = 0 (Ax, # 9) 

and for a free end ordinate 

(2.20) 

(2.21) 

A direct calculation shows that the number of conditions equals the 
degree of arbitrariness. In this manner, the contour of the minims drag 
body may be constructed. In the general case, it may contain an end-wall 
(flat nose), an extremal, and the straight line y = yl. In order that 
the constructed contour he optimal, aside from the necessary conditions 
on the boundaries of the segments (2,151, (2.161, (2.18) and (2. lo), it 
is necessary to satisfy similar conditions for the extremals. To obtain 
these conditions, we calculate the second variation g2f, keeping in mind 
that it is necessary to consider only variations corresponding to a 

two-sided extremum (for boundary variations different from zero, there 
are already corresponding terms in EI). Moreover, we shall restrict 
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ourselves to the case of (2.10). The expression 
of the functional 

J = ” F (y, 2’) dy 
s 
Ye 

for x f 0 and y,, < y \<yz is of the form 

!!a 

for the second variation 

VJ = \ F r’x’ (W* dy + + (F,- - 4,+)o (AyJ2 + +Fm (Ayr)’ (2.22) 
Yt 

Consequently, in the case considered, it is necessary for minimum 
drag that on the extremal (yz\<y\(yl, O<n\(z3) 

at point 2 
(m.24) 

*$ + (L G- -Iv+)*,,,_* > 0 
I+ 

and, for a free ordinate 

Y@Y~ f 0) 

v (1 + 21’3-l + (X, f,), > 0 
(2.25) 

at point 1. Fig. 1. 

We know from the calculus of variations that the first of these in- 
equalities (Legendre’s condition) is a necessary condition for the 
minimum in the general case. Finally, we note that the necessary condi- 
tions for the minimum are also sufficient conditions, if strong inequal- 
ities hold in (2.15), (2.18) and (2.23) to (2.25). ‘lhe solution of the 
variational problem may give some relative minima. In this case, we must 
compare the magnitudes of the drags. 

As an example, let us find the optimal contours for the case of given 

body dimensions. Ue can show that the optimal contour consists of no 

more than two segments: an extreaal and an end-wall (the latter may be 

absent). From (2.11). it follows that in the plane case the ertremale 

are straight lines, while in the axisymmetric case they are convex 
curves (cf., e.g. [lOI or [I41 ). In accordance with condition (2.23), 

the minimum corresponds only to the ertreaals or their sections with 
X’ > 3-l”. The matching condition (2.14) gives x+’ = 1, i.e. u+ = r/4, 
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independent of v. All the possibilities of solution are shown in Fig. 1, 

where ho = Y1° - Y**l Y() 
*= 

YOI%l, Y1° = Y1IX1’ The plane contours with 

end-walls (flat noses) and the ducted axfsymmetric bodies are new. We 
note some interesting features. For optimal bodies without end-walls, 
ho = h*(x, ‘, yoo). For h*(l, yoo) B hod h”(3-1/2, yoo), there are two 

solutions - with and without end-wall (dotted line in Fig. 1). satisfy- 
ing all the necessary conditions. However, the body with the end-wall 
has a smaller drag. The regions a, b, c of different solutions for 
bodies with ducts are shown in Fig. 2. All ducted bodies correspond to 
points on the graph lying below the straight line yoo - yl*. The 
straight lines yoo = yl* - 1 and yoo = yl* - 43, denoted by numbers 1 
and 2, are asymptotes of curves separating the regions a and b, and b 

and c, respectively. We also note that if positive angles are allowed 
at the corner in the plane case with h * > 1, there would be, in addition 
to the contour of Fig. 1, an infinite set of optimal contours, consist- 
ing of arbitrary combinations of vertical segments and segments of 
straight lines with X’ = 1. However, the drags of all such contours are 
the same and equal to that of the body in Fig. 1. 

3. Busemann's drag law, According to Busemann's drag law, for 
O<o\<v, the pressure on a body surface is determined only by its 

shape 

Y 

p=P( sida + y-v$sino S yvcosady) (3.1) 
?I* 

From this, within a constant positive multiplier 

Let us define the class of admissible functions. As in the case with 

Newton's formula, the restriction (2.3) remains. However. there are also 

Fig. 2. 

other restrictions. In formula (3.11, the 

pressure can become negative on a convex 

body, which is physically meaningless, this 

being due to the inexact nature of the 

Fusemann formula. +Ihe necessity for taking 

this into account in solving variational 

problems was pointed out by Hayes [ll~.Thus, 

the class of admissible contours must be 

further restricted by the condition 

P>O (3.2) 

Finally, since the pressure cannot be in- 

finite, we must exclude from consideration 

all corners, except those joining a front 
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end-wall to the rest of the body (here o p x/2 and the second term in 

(3.1) vanishes). Thus, the class of admissible contours consists of 
curves, which issue from the point y = yO, x = 0, which contain one or 

two smooth segments (in the latter case the first segment must be a 

piece of the straight line x = O), and which satisfy the conditions 
(2.3) and (3.2). 

Segments of the straight lines (2.4) and (2.5) and the curve p = 0 

may be sections of boundary extrema. The equation of such a curve can 
be written in closed form and was first obtained by Lighthill [261. In 

the general case, it can be obtained in the same way as in [llI and has 
the form 

x=x3+ y “+2 - (v + 2) (Yo"+' + xa) Y - Yay+2 + (v + 2) (Yo”+’ + %a) Ya 
(v + I) (v + 2) N sin at (3.3) 

(N = f y’cosady) 
lio 

Here the subscript 3 denotes quantities at the starting point of the 

surface p = 0. We can show that on the curves (3.3), we have u >O and 

do/dy <O (the equality signs holding at y = m). An exception is the 
surface p = 0 starting from the points 0 or 2 (where N = 0, the equa- 
tion of which is y = const. 

Before we deal with the solution, it will be useful to clarify the 
order of arrangement of the different segments. The segment y = yl may 
only be a closing segment of the contour, and this only if on the 
extremal u = 0 for y = yl. This case will be considered separately. The 
initial portion of the contour may consist of an end-wall (X = 0, yq< 

Y bY& and extremals. To clarify the order of alternation of the 
extremals and the line p = 0 a special investigation is necessary. For 
given dimensions of the body, Hayes [ill has shown on the basis of not 
completeIy rigorous arguments that the closing segment must be one with 
zero pressure. Subsequently a rigorous proof of this was given by Sonor 
[251. For thin bodies, this fact as well as the absence of interior 
segments with p = 0 were given by Miele [123, and for a number of other 
isoperimetric conditions as well. In the present paper, the question of 
the number of zero pressure segments will not be considered. But the 
question of closing segments is studied for the general case. 

If point 3 is the end point of the last extremal, then 

y* 
v+1 -r v+1 

VI 

x = - cos Qg s y’ cos a dy 

k 
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in which the points 3 and 1 may coincide. As before, form the functional 

Here A', ..,, hW are the Lagrange multipliers. 'She main difference 

between this formula and (2.6) is in the presence of a factor before 

the functional which contains x3'. Thus, in the expression for 61 there 

appears a term with Ax,' (the symbol A as before denotes the difference 
in a quantity at the varied and original junction points). It is con- 

venient to carry out the following construction. From the varied point 

3 we draw the curve (3.3) until it intersects with the straight line 

Y = yS. 'lhe difference in the quantity x' at this point and at the 

original point 3 we denote by 8'~~'. Then 

Ax; = 8*x; +x,"A\y, = &'x: + & Ays (3.5) 

where x3 ' is found from (3.3). 

Taking the variation of the functional (3.4), and taking into account 

(2.8) and (3,5), we get 

61 = (A, f - x%)r AYE + (A, fxe)l Ax, - ye cos a,sisP i7z8r3 - 

-N sin3 ~Sa6*5~' - [yv cos 6s (I - Sin' Q+) - (A, &_ - fzt+)h Ax, + 

+ 19' Cos 6, Cos' a+ + (A, f_ - f, + q.‘f,~,)l %Ay2 + (3.6) 

+r{(A,t) + -$y'c0sa,sin3a-(A, f&}Szdg +[(A,f,---&f,.)Bzdy 
tto v* 

From this we find the equation of the extremals 

i 
h=h 

cos 63 1 
(3.7) 

and the matching condition at point 2 

ya’ cm3 %c + (1, f_ - f+ + 

Here A are new Lagrange multipliers. 

E’+fY+)z,x=x’_&J = 0 (3.8) 

Mien cos o3 = 0 here and in all 
following equations, we must omit all terms not containing h. 

Equations (3.7) and (3.8) are the necessary conditions for an 

extremum. For the Newton drag law, the requirement on the non-negative- 

ness of the term containing 5x, gave one of the necessary conditions of 

a boundary mini~m. Here, this term is identically equal to zero. In 
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fact, if x+’ = x_‘, then the coefficient of Ax, vanishes. Thus the 
necessary condition for a boundary minimum at the end-wall has the form 

(for Yo \<Y \<Yp the admissible 6x>O) 

(3.9) 

At a corner the indicated term vanishes since the admissible Ax, 

vanish. Since this holds also with respect to 6x, then for corners the 

inequality (3.9) is not required. 

Let the last segTnent of the optimal body be an extremal (points 3 

and 1 coincide). We vary this sepent, in such a way that Ayyl = AxI = 

6x1 = 0. Fran equations (3.6) and (3.7) 

81 = - N sins oliYx,’ (3.10) 

If p1 > 0 and 1.7~ > 0, then &i”xl ’ is arbitrary, and x z I may be 

changed in any direction, which contradicts the assumption of an optimal 
contour. Consequently, if the solution with a closing extremal segment 

gives p1 > 0 and u1 > 0, then the optimal contour terminates with a 

segment p = 0. 

The cases aI = 0 and u1 > 0, p1 = 0 are studied in the usual fashion 

and give the following end conditions: 

y1’sirlS 61 - (a, f,*)r = 0 for Az1#0 (3.11) 

yr” sins 6, cos 6, + (A, f - x'fXf), = 0 for Ayl#O (3.12) 

We note that for u1 > 0 and p1 = 0, in accordance with (3.1) , we 
have 60X1’ d 0, i.e. a boundary extremum is realized through gOxl’. 

To obtain the necessary conditions for an extremum at the points 3 

and 1 in the general case (yl > y,), it suffices to vary the contour in 

the class of curves with a closing segment p = 0. Then, in agreement 

with (3.3) 

6x, = Ax, - x1’ Ay, - zv bOxsf - dx 

and on the segment 31 

Substituting these expressions into (3.6), fixing the sepent 02, 

and taking into account the condition (3.7) and the fact that for an 

optimal contour Sx = 0, we get 
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8r = [(y,~ sin3 as - Q) x1’ + (I, f - &&I vs 6s AYI i- 

+ fa - ys* sing Q~ -+ (I, fzt)ll cos d,Ax, f Ib - N sin’% - 

- (x1 - x3) (a - ysv sin8 as)1 sin 1&80:~’ 

where the variations Ay,, Ax, and E”x3’ are independent, and 

111 

u= &,f,-d 
!i( & fx*) dY9 
us 

x - XQ) 
i 
x, f, - +t) dy 

Ya 

Equating SI to zero, we find the matching condition at the point 3 

b-_ssin*a,-(x,-x2,)(a-yy,‘sin5a,) = 0 (3.13) 

and the end conditions 

a - ysy sins 63 + (1, fd), = 0 for AZI # 0 

(ysv sins bS - a) x1’ + (X, f - x’f,& = 0 for AYI # 0 

(3.14) 

(3.151 

We observe that equations (3.11) and (3.12) are special cases of the 
two subsequent equations when y3 = yl. The equations determine the con- 
tour of the body, and also the coordinates of the point 3. 

When (2.10) is satisfied, the equations are significantly simpler; 
in particular, as in the case with Newton’s formula, the equations for 

the extremal may be written in parametric form. Fquations (3.13) to 
(3.15) simplify to 

(3.16) 

tx, c - (2r - 5) f,*), - N sina 6a + (zr - x8) y,“sin ‘as = 0 (e = 4’ Z’f,,iq 

0, fxh - y3v sing Q = 0 for ASI # 0 vi (3A7) 

y;gr’ sins o3 + (1, f, - x,lf,p), = 0 for &I# 0 (3.18) 

We now find the necessary conditions for a minimum for the segment 
of the contour y = y1 and for extremals. ‘lbe first condition is found 
from the corresponding expression for 6.l and is identical with (2.19). 
To derive the remaining conditions, we consider only the case (2.10), 
which will restrict the variations of the ordinate of the point 2 and a 
portion of the extremal 23. Using formula (2.22), we find 

A21 = + tv cos 6, + (L f,-. - f,,) 12 ( Ay,)' -k 
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+ f [3y’ cos d sin4 6 + (A, f,),,)] (&~‘)~dy 
lh 

Consequently, the necessary conditions for the minimum are 

v COSb4 + (L fy_ - fy+), > 0 

3y* co9 a sid d + (A, f&J > 0 rherew G y 6 y8 

Under strong inequalities, the conditions (3.19), (3.20), (2. 19) and 
(3.9) (the last only possible when there are no corners) are not only 
necessary but also sufficient conditions for minimum drag. 

In calculating X and I it was convenient to use the fact that , as 
long as the closing segment 31 has zero pressure, then the drag of the 

entire body equals that of the front segment 03. In regard to this, how- 
ever, two questions remain unclear; first, how the drag on the closing 

segment changes when the front segment is varied, and second, how the 

total drag changes when the closing segment is varied. Without entering 

into details, we merely indicate here that if the segment 03 is optimal, 

then in both cases, any admissible variation increases the total drag. 

Ihe proof of this fact follows from the observation that N appears with 

coefficients of the same sign in expression (3.1) for the pressure on 

the closing segment (where &/dy < 0) as well as in the expression for 

X. 

(3.19) 

(3.20) 

In the previous section, optimal contours for given body dimensions 

were obtained using the Newtonian drag law. For comparison we carry out 

similar investigation for the Busemann drag formula. We note, however, 

that the main results for this question have already been found in [ll, 

24,251. It turns out that optimal contours consist of no more than 
three sections: an end wall, an extremal curve, and a zero pressure 

curve - arranged in that order, From equation (3.7). it follows that in 

the plane case the extremals are straight lines, while in the axisym- 

metric case they are convex curves (cf., e, g. L11.241). In conformity 

with condition (3.20). the minimum is realized for all extreaals with 
I’> 0. The matching condition (3.8) reduces to the condition that there 
be no corner (discontinuity in slope) at the function point between the 
end-wall and the extremal. Thus, in the plane case, the Optimal CODtOUrS 
contain no end-walls. Contours of axisgmmetric bodies without ducts con- 
sist of three sections: an end-wall, an extreaal, and a segment of zero- 

pressure curve. Ducted bodi es may or may not have end-walls - the 
applicability of each configuration is determined by comparing the 

magnitudes of x. From condition (3.16). it follows that x3 = 0.5 x1 for 
plane bodies [II] and x3> 0.6 x1 for axisymmetric bodies without ducts 

L11.251. 
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In conclusion, me make certain observations on the determination of 

optimal bodies in the exact formulation. Although in this case restric- 

tions (2.3) and (3.2). related to the inexactness of the drag formulas, 

drop out, the other restrictions connected with the formulation of the 

problem remain. For given dimensions this leads to the straight lines 

(2.4). which may turn out to be segments of a boundary extremum. Thus 

one may try to construct optimal contours, assuming that they consist, 

for example, of segments of extremals and end-walls. In doing this, it 

is first of all necessary to know how to determine the extremal segment 

for given dimensions of the end-wall. This part of the problem was 

solved in [2,31. Next, it is necessary to select such an end-wall dimen- 

sion that its increase or decrease results in an increase in the drag. 

Such a procedure may be carried out, for example. by numerically compar- 

ing the magnitude of x for bodies consisting of an end-wall and an ex- 

tremal segment for different end-wall dimensions. However, even if such 

an end-wall dimension is found, it still does not indicate that the con- 

structed contour is optimal. It is necessary that part of the end-wall 

be part of a boundary extremum. Clarification of this feature leads to 

major difficulties, the solution of which still is unclear at this 

point. 

The author is grateful to 1u.D. Shmyglevskii for discussions of the 

paper. 
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